Inelastic Dark Matter

Dave Tucker-Smith
Williams College

arXiv:0807.2250 with S. Chang, G. Kribs, and N. Weiner

Has DAMA detected dark matter?

	A (cpd/kg/keV)	$T = \frac{2\pi}{\omega} \text{ (yr)}$	$t_0 ext{ (day)}$	C.L.
DAMA/NaI				
(2-4) keV	0.0252 ± 0.0050	1.01 ± 0.02	125 ± 30	5.0σ
(2-5) keV	0.0215 ± 0.0039	1.01 ± 0.02	140 ± 30	5.5σ
(2-6) keV	0.0200 ± 0.0032	1.00 ± 0.01	140 ± 22	6.3σ
DAMA/LIBRA				
(2-4) keV	0.0213 ± 0.0032	0.997 ± 0.002	139 ± 10	6.7σ
(2-5) keV	0.0165 ± 0.0024	0.998 ± 0.002	143 ± 9	6.9σ
(2-6) keV	0.0107 ± 0.0019	0.998 ± 0.003	144 ± 11	5.6σ
DAMA/NaI+ DAMA/LIBRA				
(2-4) keV	0.0223 ± 0.0027	0.996 ± 0.002	138 ± 7	8.3σ
(2-5) keV	0.0178 ± 0.0020	0.998 ± 0.002	145 ± 7	8.9σ
(2-6) keV	0.0131 ± 0.0016	0.998 ± 0.003	144 ± 8	8.2σ

DAMA Collaboration (R. Bernabei et al.), Eur.Phys.J.C56:333-355,2008.

How to reconcile with other experiments?

Constraints from CDMS II, XENON10, etc. seem to rule out a standard WIMP with SI interactions as interpretation of DAMA data.

- If the DAMA signal is from dark matter . . .
 - how does the dark matter evade detection elsewhere?
 - what other signatures can we expect?

Consequences of inelastic dark matter

DTS, N. Weiner

Heavier targets are favored over lighter ones (e.g. I over Ge).

Annual modulation is enhanced relative to average signal.

Energy spectrum is changed dramatically, with lowenergy events suppressed.

Inelastic dark matter

$$M_{\chi'} = M_{\chi} + \delta$$

$$\delta \sim 100 \text{ keV}$$

• Elastic scattering, $\chi N -> \chi N$, is either absent or suppressed.

Inelastic scattering , $\chi N -> \chi' N$, dominates.

Kinematically allowed only if velocity is large enough:

$$\beta > \sqrt{2\delta/\mu}$$

Inelastic scalars

Real and imaginary parts of a complex scalar are kept degenerate by U(1) symmetry.

If the U(1) is broken by a small amount, the degeneracy is lifted.

Example: sneutrino with lepton number violating mass squared term. Coupling of Z to real and imaginary parts is off-diagonal.

Hall, Moroi, Murayama

Inelastic fermions

If heavy Dirac neutrino has small Majorana mass, couplings of leftand right-handed components to Z boson is off-diagonal

Another example: pseudo-Dirac neutralinos in a SUSY model with extended R symmetry.

Kribs, Poppitz, Weiner

Heavier targets are favored

no halo particles have large enough speeds to scatter at CDMS

M.C. Smith et al (2007): v_esc is between 498 km/s and 608 km/s at 90% CL

Annual modulation is enhanced

Low energy event rate is suppressed

J. Angle et al. (XENON), Phys.Rev.Lett. 100, 021303 (2008)

IDM predictions

Tungsten (A=184): an ideal target

G. Angloher et al. (CRESST), arXiv:0809.1829

about 10 events expected from DAMA signal

D. Tucker-Smith, BF2008

Benchmark Points

#	m_{χ}	σ_n	δ	DAMA	XENON	CDMS	ZEPLIN	KIMS	CRESST
				2-6 keVee	4.5-45 keV	$10\text{-}100~\mathrm{keV}$	5-20 keVee	3-8 keVee	$12\text{-}100~\mathrm{keV}$
	(GeV)	$(10^{-40}\mathrm{cm}^2)$	(keV)	(10^{-2} dru)	(counts)	(counts)	(counts)	(10^{-2} dru)	(counts)
expt				1.31 ± 0.16	24 (31.6)	2 (5.3)	29 (37.2)	5.65 ± 3.27	7 (11.8)
1	70	11.85	119	0.89	1.39	0	8.46	0.65	8.76
2	90	5.75	123	1.21	5.52	0	14.40	1.52	9.75
3	120	3.63	125	1.22	9.06	0.13	18.09	2.18	10.7
4	150	2.92	126	1.18	11.17	0.95	19.93	2.53	11.2
5	180	2.67	126	1.15	12.46	1.93	21.01	2.74	11.6
6	250	2.62	127	1.11	14.01	3.60	23.32	3.00	12.1

Analysis details

= 3 dof (m, σ , δ) fit to DAMA spectral modulation data.

■ For other experiments, reported events are counted as potential signal events when obtaining bounds.

■ Used pmax method to obtain 90%CL bounds.

Yellin

DAMA Collaboration (R. Bernabei et al.), Eur.Phys.J.C56:333-355,2008.

D. Tucker-Smith, BF2008

Parameter space: $m - \sigma$

 $v_{esc} = 500 \text{ km/s}$

 $v_{esc} = 600 \text{ km/s}$

Conclusions

■ The inelastic dark matter hypothesis is still consistent with all direct-detection experiments.

 Scenario prefers heavy targets, leads to enhanced annual modulation, and predicts very different energy spectra (suppressed at low energies).

■ This scenario will soon be ruled out or confirmed (next results from CRESST may be decisive).